Characterizing the Impactors of the Late Heavy Bombardment using Highly Siderophile Elements and Osmium Isotope Systematics in the Lunar Impact Melt Breccia 76055

Lorne Loudin
(2008 SU1A, Keene State College)
Dr. Richard Walker (Co-Investigator GSFC, U of Md)
Dr. Igor Puchtel (U of Md)
Lunar Impact Melts & the Late Heavy Bombardment

What were the compositions of the impacting objects of the Late Heavy Bombardment (LHB) \(\sim 3.9 \) Ga?

Asteroids, comets, or both?

Were complex organics & water delivered during the LHB?
Lunar Impact Melts & the Late Heavy Bombardment

- “Fingerprints” of the 3.9 Ga impactors

Retain the signatures of some elements. The Highly siderophile elements (HSE=Re, Os, Ir, Ru, Pt, Pd, Rh & Au) are the easiest to discern.
Highly Siderophile Element Analysis

- Analyzed seven additional 40-200 mg sub-samples
- High pressure/temperature digestion
- Measured HSE concentrations by isotope dilution techniques using TIMS and ICP-MS
All data from Puchtel et al. (2008)
Adapted from Puchtel et al. (2008) Data for 76055 added
Why are there large ranges in Re/Os, Pd/Ir, Ru/Ir, & Pt/Ir ratios?

- Two Component Mixing
 The impactor & the lunar crust; Re fractionated from Os during impact, Pt, Ru, & Pd fractionated from Ir (Volatility?)

- Three Component Mixing
 One pre-Serenitatis impactor, the Serenitatis impactor, and the lunar crust
 The two impactors are required to have different Re/Os and HSE ratios
Ir Vs Pd
(Hypothetical Mixing of Two Impactors)
Conclusions

• 76055 is unique

 Pt, Pd, and Ru all have non zero intercepts on plots versus Ir

 Range of Os composition reflect variable Re/Os in material

 Pd/Ir, Pt/Ir, Ru/Ir ratios more variable than other lunar impact melt breccias

• Three component mixing between the Serenitatis impactor, a pre- Serenitatis impactor, and the lunar crust
Acknowledgments

This research was made possible by The Goddard Center for Astrobiology, The Isotope Geochemistry Laboratory at the University of Maryland, and the Astrobiology Analytical Laboratory at GSFC.

Works Cited:

Photo Credits:
http://www.berkeley-observatory.co.uk/index_files/Page360.htm ; www.geosociety.org
http://www.astro virginia.edu ; http://www.foxnews.com/story/0,2933,232898,00.html